If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+8x-1.5=0
a = 4.9; b = 8; c = -1.5;
Δ = b2-4ac
Δ = 82-4·4.9·(-1.5)
Δ = 93.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{93.4}}{2*4.9}=\frac{-8-\sqrt{93.4}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{93.4}}{2*4.9}=\frac{-8+\sqrt{93.4}}{9.8} $
| 17t−6t+5t−9t=7 | | 3x+8=29, | | 10p-3=2;12+4p)-7 | | 6x+(14x-5)=15 | | 5p+4=2p+4+3p | | x+38/17=-2 | | -3a+4(3a-5)=-74 | | C=2.75+3.50y | | 3x+2=2x+23=90 | | 2x10-5=15 | | -2*(x-5)=6*(2-1/2x) | | 2x+7=-3(x+3) | | 6=5p-8-4p | | -14-10y=-12y+20 | | 37-2x=4+7(-7x-2) | | -4(-3=4x)-5=-73 | | -15.5+(-3.6x)+1.8x=20.5 | | -12.1=y/6+7.1 | | 0.59x+35=1.29x | | 8d-25=2d | | 3x-4=3x-14 | | 5(y+11)=360 | | 6x+x-4x+4x-x+2=20 | | 3(c-2)=60 | | -12/u=4 | | 217=6-w | | -16m+18=-18m | | (6x-10)=(2x-4)+(2x+16) | | (2x−24)+(5x−27)=180 | | 5x+2=+12 | | -1+5p+8p=6p-36+7p | | 13x-(2x-5)=-7 |